publications

2025

  1. InverseBench: Benchmarking Plug-and-Play Diffusion Models for Scientific Inverse Problems
    Hongkai Zheng*Wenda Chu*, Bingliang Zhang*, Zihui Wu*, Austin Wang, Berthy Feng, Caifeng Zou, Yu Sun , Nikola Borislavov Kovachki, Zachary E Ross, Katherine Bouman, and Yisong Yue
    In The Thirteenth International Conference on Learning Representations, Spotlight (top 5.1%) , 2025

2024

  1. Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
    Hongkai ZhengWenda Chu*, Austin Wang*, Nikola Kovachki, Ricardo Baptista, and Yisong Yue
    2024
  2. Fast Training of Diffusion Models with Masked Transformers
    Hongkai Zheng*Weili Nie*Arash Vahdat, and Anima Anandkumar
    Transactions on Machine Learning Research, 2024
  3. Physics-informed neural operator for learning partial differential equations
    Zongyi Li*Hongkai Zheng*, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzadenesheli, and Anima Anandkumar
    ACM/JMS Journal of Data Science, 2024

2023

  1. Fast sampling of diffusion models via operator learning
    Hongkai ZhengWeili NieArash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar
    In International conference on machine learning, 2023

2022

  1. Langevin Monte Carlo for Contextual Bandits
    Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar
    In International Conference on Machine Learning, 2022

2020

  1. Implicit competitive regularization in GANs
    Florian Schaefer*Hongkai Zheng*, and Animashree Anandkumar
    In International Conference on Machine Learning, 2020